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Concept-to-speech synthesis by
phonological structure matching

By P. A. Taylor

Centre for Speech Technology Research, University of Edinburgh,
80 South Bridge, Edinburgh EH1 1HN, UK

This paper presents a new way of generating synthetic-speech waveforms from a lin-
guistic description. The algorithm is presented as a proposed solution to the speech-
generation problem in a concept-to-speech system. O¬-line, a database of recorded
speech is annotated so as to produce a phonological tree for each sentence in that
database. Synthesis is performed by generating a phonological tree called the tar-
get tree, and searching the database of trees to  nd nodes that are the same in
both trees. A search strategy using target and concatenation costs is then used to
 nd the optimal sequence of units for the target sentence. This paper explains this
algorithm, compares it with existing algorithms, and concludes with a discussion of
future directions.

Keywords: speech synthesis; phonology; unit selection

1. Introduction

The term text-to-speech (TTS) synthesis is used to describe the process of converting
given raw text into synthetic speech. Concept-to-speech (CTS) is a term often used
for speech synthesis where the input is not text, but, rather, a machine-generated
message. We can think of a TTS system as comprising two main components: text
analysis and speech generation. The text-analysis component has to resolve the ambi-
guities inherent in written text and produce a clean linguistic representation of the
sentence to be spoken, e.g. appropriate word stress. In CTS, the situation is very
di¬erent. There is no prior input text as such, rather, a natural language genera-
tion (NLG) system generates some text from scratch. In one of the domains used
for this work (see x 3), the task is an intelligent museum guide in which descrip-
tions of museum exhibits are generated dynamically according to the interests of
the visitor, taking into account the context of what the visitor has already seen.
An utterance is generated by the NLG system in response to a query (e.g. `tell
me more about object X’) by using a database of exhibit information. The out-
put of the NLG system is then fed into the synthesizer, which converts this into
speech.

Thus, in the CTS case, there is no text ambiguity: the generator can annotate the
text it produces with the information needed to guide synthesis. For instance, when
the word `project’ is used, the system knows whether it is a noun or a verb, whereas
a TTS system has to guess this. Information that is virtually impossible to resolve in
TTS can be used quite easily in CTS; as well as word stress, ambiguities arise in many
other areas including pronunciation, phrasing and prosody. In general, CTS leads to
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Figure 1. Text-to-speech and concept-to-speech.

a much richer, more reliable linguistic input to the synthesizer. Figure 1 shows how
TTS and CTS systems have di¬erent input components, but can use the same speech-
generation component. NLG systems vary in sophistication, ranging from systems
that use simple templates to systems that generate text using sophisticated linguistic
models. Depending on the complexity of the domain, many di¬erent approaches are
used.

In speech generation, on the other hand, the choice is between two quite distinct
approaches. In slot-and- ller synthesis systems, a carrier phrase such as `the train at
platform X is now departing for Y’ has its slots X and Y replaced by a set of pre-
recorded words. While the number of possible messages may be large, it is  nite. This
sort of system is often contrasted with `genuine’ speech-synthesis techniques, such as
diphone synthesis, in which arbitrary messages of any sort can be synthesized. The
advantages of each system are obvious: because the slot-and- ller system uses long
carrier phrases with appropriate prosody and naturally recorded words, it can often
sound excellent; however, it can only speak the range of messages for which it has
recordings. In contrast, while diphone synthesis is capable of generating the speech
for any input, its quality is considerably worse. The goal of the research described
here has been to bridge the gap between these two di¬erent synthesis approaches
and build a synthesis solution that combines the high quality of the slot-and- ller
approach with the ®exibility of diphone synthesis.
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Figure 2. Di® erent approaches to synthesis development, adapted from Yi & Glass (1998). In
approach A, unconstrained input is achieved ¯rst and then quality is improved. In approach B,
near-perfect quality is achieved ¯rst and then ° exibility is improved.

2. Domain-speci¯c synthesis

It is generally accepted in the speech-synthesis  eld that unconstrained TTS synthe-
sis is the only goal of the  eld. The culture of processing unconstrained input has
come about because even early systems were quite capable of producing reasonably
intelligible speech from unconstrained input. This is possible in TTS because lexi-
cons and letter-to-sound rules can convert any letter sequence into a phone sequence.
This phone sequence can then be converted into sound using rule- or diphone-based
waveform generation. Of course, the quality of the resulting speech is much less nat-
ural than human speech, but the fact that even basic systems could handle uncon-
strained input led researchers to concentrate on improving the quality of speech for
this unconstrained input task.

This situation is somewhat unusual in speech and language processing. For exam-
ple, in speech recognition, there has been a very noticeable development over the
last 30 years, from single-speaker, isolated-word, low-vocabulary tasks to speaker-
independent, large-vocabulary, continuous-speech tasks. Roughly speaking, the accu-
racy of speech recognizers over the last 30 years has not changed much as error rates
are usually quoted as being less than 10%. However, progress has certainly been
made, because the tasks have been getting steadily harder.

The question is, therefore, could more progress be made in synthesis by  rst making
the task easy enough so that more-or-less perfect synthesis is possible, and then
steadily increasing the di¯ culty of the task until perfect synthesis for unconstrained
input is achieved? Yi & Glass (1998) have summed up this situation through use of
the graph shown in  gure 2. The two previously mentioned speech-output methods|
unconstrained TTS and slot-and- ller synthesis|are shown on the graph as being
examples of the two approaches.
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This paper presents phonological structure matching, a new algorithm that takes
approach B. This algorithm is domain speci c, in that it is geared towards producing
high performance in a limited domain, just as with a speech recognizer. In considering
the problem of domain-speci c synthesis, some aims and principles were set out
to guide the development of this type of system. It was important that the main
limitations of slot-and- ller synthesis were removed. While the vocabulary of domain-
speci c systems will certainly be specialized, it is simply too prohibitive a restriction
to have a  xed vocabulary. Again, with regard to the grammar, more ®exibility is
needed than with the slot-and- ller approach. It was also considered important to
build a system that was automatically trainable/adaptable to new domains. In other
words, a general technique for domain-speci c synthesis was the requirement, rather
than a solution for a particular domain.

The proposed solution works for speci c domains not by having a predetermined
vocabulary or grammar, but, rather, by using pre-recorded domain-speci c language
data to train the system. In other words, the idea is to bias the synthesizer’s viewpoint
of what language is to cover the words and constructions found in the given domain.

3. Domain descriptions

(a) ILEX museum guide

ILEX is an NLG system built to serve as a museum guide. It uses a database of
museum exhibits that contains a variety of information about each exhibit. Rather
than produce a canned description of a given exhibit, ILEX is intelligent in that it
delivers unique descriptions of objects depending on a number of contextual factors.
ILEX keeps track of which exhibits have already been seen, and, hence, when viewing
a room of Roman swords, the system only gives background information for the  rst
exhibit. As the visitor moves around the exhibits, only the particular details of each
exhibit are explained, and these are often contrasted with previous exhibits.

(b) Jupiter weather information system

The Jupiter system is a weather information system developed by the Spoken
Language Systems group at MIT. In response to spoken user queries, the system
 nds web-based weather-information systems, analyses their content, and generates
a suitable reply. For this domain, we used 200 typical messages from the system
as training data. Within these 200 sentences, there were about 600 unique words.
This domain is interesting in that although weather reports are often formulaic,
it is still the case that new constructions are occasionally used. The majority of
vocabulary items are place names, and while the training data cover the names
of the most frequently requested places, new names often occur, and, hence, the
synthesis component must be able to handle this.

4. Speech data

The algorithm uses pre-recorded speech from each domain. The ILEX domain used
62 paragraphs of item descriptions. The labelled speech contains over 6000 words
and 22 000 phones. The Jupiter data comprise 200 weather reports, making about
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Figure 3. Fragment of a phonological tree.

6000 words and 17 000 phones. In addition to the domain-speci c data, 450 TIMIT-
style sentences (TIMIT 1990) were also used. The utterances were recorded from a
single speaker and hand labelled for phone boundaries. The syntactic structure of
each sentence was also labelled by hand. A held-out set for each domain was used
for testing. In the Jupiter domain, 5% of the test set words were not in the training
data. In the ILEX domain, this  gure was 25%.

5. Basic phonological structure matching

(a) Phonological trees

The phonological-structure-matching (PSM) algorithm is based on concatenating
appropriate arbitrary sized units of speech from a database. More speci cally, nodes
in a phonological target tree generated by the NLG system are matched against
nodes in a set of phonological-database trees in order to  nd the biggest units of
speech in the database to concatenate.

The database preparation stage is performed o¬-line and involves building a phono-
logical tree for each utterance. In the current set-up, the phonological tree is con-
structed by combining the metrical tree for the sentence with the sub-syllabic phono-
logical structure. Metrical trees are binary branching trees whose nodes have relative
metrical strength relations. If a node is labelled strong, its sister will be weak and
vice versa. The above-word part of the metrical tree is formed by  rst copying the
syntax structure generated by the NLG system and then assigning strong and weak
nodes according to the nuclear stress rule and other conventions described in Liber-
man (1975). Below the word, a binary branching tree is formed between the words
and syllables, again according to conventions laid down in Liberman (1975). Below
the syllable, a traditional onset-rhyme structure is formed which links the syllables
to the phones. The result is a single tree that completely describes the phonology of
the utterance from phones to the sentence node. Because the timings of the phone
boundaries have been marked (by hand), it is an easy matter to determine the start
and stop time of any constituent in the tree. An example of part of a tree is shown
in  gure 3.

At run-time, the  rst task is to produce a target tree representing the phonological
structure of the utterance we want to synthesize. This is formed in a similar way
to the database trees. The syntactic tree and words come from the output of the
NLG, which is then mapped into a metrical tree as above. The sub-word part of the
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tree is created by using a lexicon and the metrical and sub-syllabic structure rules.
This tree is called the target tree as it represents the phonological structure of the
utterance we wish to synthesize.

(b) Finding candidates

Given the target tree and database trees, the next task is to match nodes in the
target tree with those in the database. As each node in the database tree repre-
sents a section of recorded-speech waveform, the idea is that by  nding nodes in the
database trees that match the target tree, we are e¬ectively  nding suitable stretches
of waveform that can be used in actual synthesis.

First, the root node of the target tree is set to be the current node. The database of
trees is then searched to see if any node matches the current node. A match is taken to
be the minimum requirement for a potential synthesis unit and occurs when the trees
beneath the current and database node match with regard to structure, and have the
same terminal nodes (phones). At this stage, other information (such as strong/weak
metrical information) is ignored. Each match is added to a list of candidates for the
current node. If no matches are found, each daughter of the current node is set to
be the current node and the process is repeated. In the worst case, the current node
will be a terminal phone node, and there will de nitely be matches to that, as all
phones are present in the database. The result of this is a target tree that has some
of its nodes labelled as candidate nodes.

Candidates can be any sort of linguistic unit including phones, syllables, words,
phrases and even whole sentences. The top-down search algorithm is designed to
pick candidates high up in the database tree, which naturally correspond to longer
units. There are several bene ts in having longer units. In any type of concatenative
synthesis, joins between units can cause distortion, and, thus, reducing the number
of joins should help improve the quality of the speech. Associated with this is the
basic fact that in concatenative synthesis, `the whole is greater than the sum of
the parts’ with regard to the nature of phone sequences. For example, while the
phonological representation of the word `tests’ may be /t e s t s/, the co-articulation
of the /s t s/ sequence is extremely complex, and, hence, it is very hard to decide
where the boundaries between the phones occur. Because of this, a single unit that
contains this sequence should sound substantially better than a set of units that
follow the phonological pattern. As the tree-matching algorithm chooses the largest
possible units, there is a good chance it would  nd a match to the word `tests’, and,
if not, at least a consonant cluster matching the /s t s/ sequence (e.g. from the word
`rests’).

For higher-level units, other factors make longer units more preferable to concate-
nated sequences of shorter units. Natural rhythm is one of the hardest properties
of speech to reproduce synthetically, but, by using units that span several syllables,
rhythm e¬ects can be implicitly modelled within the unit.

The tree-matching algorithm has signi cant consequences for domain-speci c syn-
thesis. While the utterances in the museum domain cannot be generated by a simple
slot-and- ller mechanism, it is the case that certain stock phrases|such as `this is
an example’, `in the sixth century’ or `collector’s item’|occur quite often. If the
database has a large amount of domain-speci c data, these units will naturally be
found frequently, leading to longer overall units on average.
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(a)

(b)

Figure 4. Target tree with candidate nodes at di® erent depths. The candidates at each node
form a candidate list, shown at the bottom. Each candidate relates to a di® erent section of
speech waveform of the speaker saying the information described by the node.

(c) Selecting candidates

The target tree contains multiple candidates and, from these, the single best set
of units needs to be chosen. Although the candidate units are of arbitrary length,
the tree structure ensures that there is no overlap between units, which can be a
potential problem in non-uniform unit synthesis. Figure 4 shows an example target
tree in which the nodes containing candidates are drawn in black. Although node (a)
may have units which are higher level and longer than those for node (b), all the
candidates for node (a) end at the same point, and, hence, there is no overlap between
these and the node (b) candidates. Because of this, a linear list containing the set of
units for each candidate node can be created. This list can be thought of as being
made up from a number of slots of arbitrary length, where each slot contains multiple
candidates. This is also shown in  gure 4.

(i) Target and concatenation costs

The basic tree-matching algorithm only performs a rough match between a target
node and a node in the database, and, hence, there are still substantial di¬erences
between the various candidate units for a node. A more detailed match is now used to
see how well the candidate units match the target node. This match looks at factors
such as the strong/weak values in the tree and the position of the node in the tree
(phrase- nal units sound quite di¬erent from phrase-initial ones, etc.). According
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to this measure, each candidate unit is assigned a target cost, which represents the
distance between the target and candidate unit (a cost of zero indicates a perfect
match).

It is also possible to measure how well two candidate units join together. This is
known as the concatenation cost. In the PSM algorithm, the concatenation cost is
calculated using phonological and acoustic information. Each candidate unit for a
given target node will have exactly the same phone sequence at its terminal nodes.
But the phones immediately preceding and following the unit may di¬er from can-
didate to candidate. Experience with diphone synthesis has shown that unit context
is important in ensuring smoothing joins. For example, if we have a phone /X/ in
the context of phones /b/ and /c/, /b X c/, this will join smoothly to a phone /c/
in the previous context of /X/, e.g. Xcd. Therefore, a smooth join can be expected
between a unit /X/ followed by a unit /Y/ if the phone immediately preceding /Y/
in the original speech and the phone immediately following /X/ in the original speech
are the same. In diphone synthesis, it is also preferable to join phones in their mid-
dles rather than at their edges. Given these basic observations, concatenation cost
is calculated by a mixture of phonological information (whether the units are in the
appropriate context, thus allowing joining in their middles) and acoustic information,
calculated by measuring the Mahalanobis distancey between the acoustic features of
each frame. Mel-scaled cepstra (Rabiner & Juang 1994), F0 and energy are used for
the acoustic features.

(ii) Search and concatenation

Selecting the best set of units is a compromise between choosing the units with the
lowest target and concatenation cost. As each unit a¬ects the concatenation cost of
the next candidate, the selection of candidates cannot be done locally but, rather, has
to be done for the whole utterance. This is achieved by using the Viterbi algorithm.
The candidate list is turned into a lattice by making a path between each possible
pair of nodes at the boundary between two candidate slots. The Viterbi algorithm
moves left to right through this, and, in doing so, it calculates a partial path cost,
which is the sum of the target and concatenation costs of units in a given path. The
Viterbi algorithm works by making use of the fact that for a given unit, only the
lowest-cost path up to that point need be used; any other paths will never be in the
lowest overall path for the sentence. So, only the single best path for each candidate
unit need be kept at each point. Once the search terminates, the units forming the
path with the lowest overall cost are selected.

Given a set of candidate units, the  nal waveform is constructed by extracting the
waveforms corresponding to the chosen units and concatenating them.

6. Analysis of the phonological-structure-matching algorithm

As diphone synthesis and acoustic{phonetic unit selection are among the most pop-
ular algorithms currently being used, it is useful to discuss how they perform against
the PSM algorithm.

y An extension of simple Euclidean distance in which each component of the vector is normalized
with respect to its variance.
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Figure 5. Standard approach to synthesis, where a phonological representation
is mapped into a phonetic one before selection takes place.

In both diphone and acoustic{phonetic unit-selection synthesis, the waveform-
generation module shown in  gure 1 often comprises three phonetic components,
which then feed into the unit synthesis component. This is shown in  gure 5. These
components take the input phonological representation and use rules or other algo-
rithms to generate a phonetic phone sequence, a duration in seconds for each phone
and an F0 contour. The phonetic phone sequence is meant to represent the sequence
of phones that are actually observable in the waveform. For example, phone reduc-
tion, deletion and assimilation are represented.

The output of these components forms a phonetic representation, which is then fed
to the unit-synthesis module. If this is a standard diphone synthesizer, the diphones
for the phone sequence are found in the unit database and concatenated. This con-
catenated waveform will have the F0 and duration of the diphones as they were
recorded, and this is unlikely to match the phonetic speci cation of pitch and dura-
tion produced by the F0 and duration-generation module. Signal-processing tech-
niques such as PSOLA (Moulines & Charpentier 1990) and residual excited linear
predictive coding (Hunt et al . 1989) are, therefore, used to change the F0 and dura-
tion of the concatenated waveform to match the phonetic speci cation.

Diphone synthesis has two main problems. Firstly, the signal processing introduces
distortion. Secondly, pitch and duration are not the only factors that make two tokens
of the same phone sound di¬erent. For example, phones in stressed syllables are
di¬erent from ones in unstressed syllables, and phones in phrase-initial position sound
di¬erent from ones in unstressed position. A proposed solution to these problems
has been termed unit selection, and a number of systems can be said to belong to
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this framework (Sagisaka et al . 1992; Hunt & Black 1996; Campbell & Black 1996;
Donovan & Woodland 1995; Breen & Jackson 1998; Black & Taylor 1997; Conkie
1999; Cronk & Macon 1998).

While the details di¬er, the basic principle behind unit selection is to have multiple
examples of each type of unit (e.g. diphones) that have di¬erent inherent pitch and
duration. Instead of selecting just on phone identity as in diphone synthesis, pitch
and duration are also taken into account. The result is a waveform whose pitch and
duration match the phonetic speci cation more closely than with diphone synthesis.
From here, systems di¬er as to whether or not they use signal processing. Those
that do usually only have to make small adjustments, and so the distortion that
is introduced is less than with diphone synthesis. Other systems abandon the use
of signal processing altogether, in the hope that the prosody of the concatenated
waveform is close enough to the speci ed prosody.

The PSM algorithm can be viewed as a type of unit-selection algorithm, in that
it selects from multiple units of the same basic type. Indeed, the use of the Viterbi
algorithm to  nd the path that best optimizes target and concatenation cost is taken
directly from the Hunt & Black (1996) unit-selection algorithm. The major di¬erence
between the PSM algorithm and the others is that PSM selects on phonological
criteria, while the others select on phonetic and acoustic criteria. With regard to
 gure 5, the PSM algorithm can be viewed as simply moving the selection criteria
up a level in the linguistic hierarchy: the modules in the dotted box are deleted and
selection is performed on the phonological representations directly.

The phonetic speci cation modules can be seen as a process that transforms the
phonological speci cation into a phonetic one. For example, phonological information
such as phrase- nality is manifested in the phonetics by the relevant phones having
a longer duration. There are three main reasons why we have chosen to use phono-
logical information. Firstly, a phonological representation is more compact than a
phonetic one, and this reduces the size of the feature space used in selection. As
the phonetic and phonological representations contain the same information (one is
just the transform of the other), no loss of power or information is involved in mak-
ing this decision. Secondly, the phonetic speci cation modules often make errors. If
their output is used for selection, matches will be made to inappropriate targets. In
speech-synthesis systems, errors generally multiply throughout processing, so, while
the phonological representation may also contain errors, it will generally have the
same or fewer errors than the phonetic representation. Finally, these modules take
a somewhat crude view of the relationship between phonology and phonetics. For
example, all assimilation is performed at a symbolic phone level. In the previously
mentioned examples of the word `tests’, the post-lexical rules have a choice between
producing /t e s t s/, /t e s/ or /t e s s/, etc. In fact, none of these phonetic sequences
really describes the complexities of articulation involved in the pronunciation of this
word. But, by simply saying `select a unit whose underlying phonology is /t e s t s/’,
the synthesizer does not have to worry about the exact nature of the surface phone
sequence.

7. Back-o® and signal processing

As previously mentioned, unit-selection systems fall into two groups, those that use
signal processing and those that do not. While it has been interesting to see how
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far one can get without signal processing, there is little chance that this can really
succeed due to the combinatorics of units. For illustration purposes, consider the
variation required of a single unit. In normal male speech, F0 can vary from ca. 80 Hz
to 270 Hz, and taking a 10 Hz quantization as being adequate, that means we need
at least 20 units of the same type to represent pitch variation. However, the pitch
is not constant throughout a unit, and so we need units for rising and falling F0
contours. Assuming this can be modelled by beginning, middle and end values, the
number of possible units to model all pitch variation is 20 20 20 = 8000. Duration
variation is similar and we might need 15 units to cover this variation (from, say,
50 ms to 200 ms in 10 ms steps). Given that the smallest practical units are diphones
(about 2000 exist in English), we would therefore need 8000 15 2000 = 240 000 000
units, corresponding to hundreds of years of recorded speech. That said, it is still
sometimes the case that the distortion caused by signal processing is deemed to
be worse than the speech having the wrong prosody. However, as signal processing
algorithms improve through further research, the balance will swing back decidedly
in their favour.

In acoustic{phonetic unit selection, the application of signal processing is straight-
forward: the signal processing is used to make the concatenated waveform’s prosody
the same as that of the output of the phonetic speci cation modules. With the
PSM algorithm, the situation is slightly more di¯ cult as there is no phonetic spec-
i cation. As it is unreasonable to require a signal-processing module that performs
phonological modi cation directly, we use a back-o¬ scheme that employs a phonetic
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speci cation procedure similar to that of an acoustic{phonetic unit-selection module,
shown in  gure 6. The PSM algorithm works as before, but a record is kept of how
well the best unit for a given slot matches the target phonological representation.
In parallel, a phonetic speci cation is produced as for phonetic{acoustic selection.
A further module is now used to decide what the  nal prosodic modi cation should
be. If the phonological match is good, the original unit prosody will be kept. If
the phonological match is bad, the prosody from the phonetic speci cation is used
and signal processing performs the necessary modi cations. Usually, the situation is
somewhere between the two, and so a mixture of the unit and speci ed prosody is
used, weighted to take into account the closeness of phonological match, the known
accuracy of the phonetic speci cation, and the amount of distortion that the signal
processing will produce. This ensures that a suitable compromise between the natu-
ralness of unmodi ed speech and the desirability of having suitable prosody is found.

8. Performance

No formal evaluations have been carried out yet, but it is worth giving some informal
impressions regarding system quality. The best examples of PSM are a vast improve-
ment on diphone synthesis with regard to naturalness. Many of these good examples
are bordering on being indistinguishable from natural speech. The reasons behind
this improvement are those laid out above: using longer units with natural prosody
and minimal signal processing. At present, the PSM algorithm also makes some bad
mistakes, and, hence, the occasional example is worse than diphone synthesis. We
feel that these bad examples are more to do with teething troubles regarding a very
new system rather than anything systematically wrong with the algorithm itself.

The voice quality of the PSM algorithm is fairly similar to that of acoustic{phonetic
unit selection. Where the PSM algorithm really wins is in areas such as rhythm, tim-
ing, phrase- nal lengthening and intonation. This is again for the above-mentioned
reason that the PSM algorithm models these implicitly, rather than by using explicit
modules, which make errors.

9. Future work

(a) Phonological structure

Our choice of phonological structure is by no means optimal. While the use of metrical
trees has proved successful, there are many other types of phonological structure
described in the literature, and many of these may prove more suitable. The best
representation for this algorithm is one that describes the phonology as accurately
and compactly as possible: an accurate representation will cover all the required
a¬ects adequately, and a compact representation will help in producing tractable
cost functions.

(b) Training

There are a number of parameters and weights in the system that perform functions
such as measuring the relative importance of stress versus phrase- nality, whether
F0 continuity is more important than spectral continuity, and how much signal-
processing modi cation to use. Currently, these are set by hand using informal lis-
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tening experiments. This is obviously not ideal, but it is di¯ cult to see an easy alter-
native. The fundamental problem is that there is no straightforward relationship
between acoustic and perceptual measures of speech. While spectral discontinuity
can be measured by taking the Mahalanobis distance of two spectra, this is only a
vague indicator of how humans perceive spectral discontinuity at unit joins. Some
recent work (Chappell & Hansen 1998; Plumpe & Meredith 1998; Wouters & Macon
1998) has started to focus on the design of perceptually weighted acoustic measures,
and these might be used in the future in training the system parameters.

(c) Candidate selection

At present, the PSM algorithm attempts to  nd the biggest possible matches in
the database to a given node. If a match is found, the remainder of the database
is searched for other similar matches. If no match is found, the units matching the
node’s daughters are searched for. Problems can occur if only a small number of
matches are found for a node and none of those matches are particularly good. In
these cases, it may have been better to use smaller units that match the target better.
Current work is looking at ways of extending the search past a node with candidates
to  nd candidates for its daughters. During selection, the relative merits of long units
with high target costs are then matched against shorter units with lower target costs,
but which have an extra concatenation cost between the units.

(d ) Measurements of task di± culty

It would be useful to have a measure of how di¯ cult a particular domain is, as this
could give an indication of expected quality from a system used in this domain. We
have not, as yet, come up with any  rm decisions regarding this, but it seems possible
that the measures of vocabulary size and perplexity used in speech recognition could
be adopted. Perplexity is a measure of word entropy and measures the amount of
regularity in a corpus. This is a useful indicator in synthesis because of joins between
units. If the perplexity of a domain is low, the number of possible word sequences
will be lower, and, hence, the chance of units being found with the appropriate
phonological context is higher.

(e) Text-to-speech

The reason the PSM algorithm has been put forward as a useful solution to CTS
is that it is easily adaptable to a given domain. However, the algorithm also works
in standard TTS synthesis. The TTS problem can be seen in PSM terms as simply
having a much larger domain, and, hence, the training data should cover a wide
variety of text styles rather than being domain speci c. The output speech quality
is obviously worse for TTS than for CTS;  rstly because the domain is bigger, and
secondly because of errors in text analysis. However, the basic strength of the PSM
algorithm (that it uses phonological rather than phonetic{acoustic selection criteria)
will also be true in a TTS task.

A substantial part of this work was carried out while the author was a visiting researcher at the
Department of Speech, Music and Hearing at KTH Stockholm. The author expresses his thanks
to Bj�orn Granstr�om for making that visit possible and also to everyone at KTH for making the
experience there so rewarding.
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Discussion

J. Coleman (University of Oxford, UK ). The method seeks to reduce the size of the
space by adding phonological constraints, but it adds size by allowing alternatives.
Does this cause a data-sparsity problem?

P. A. Taylor. Data sparsity is a factor, and the problem increases with the richness
of description in the tree. It is an optimization task to include just enough complexity
in the model. The problem is interesting as an investigation in phonology, since it
amounts to  nding an optimal (non-redundant) phonological representation.

Unreported speaker. Does the global approach lead to rapid combinatorial explo-
sion?

P. A. Taylor. This is a potential danger. Modelling dependences between all dimen-
sions would be problematic. However, dimensions are often orthogonal, so that inde-
pendence can be assumed.

K. R. McKeown (Columbia University, New York, USA). How is prosody com-
bined with the approach? In particular, are di¬erent trees used for di¬erent prosodic
contexts? Or is the tree structure itself modi ed?

P. A. Taylor. Both of these methods can be used. However, there is often nothing
in the database that matches the desired output. In this case, a back-o¬ system is
used to model the prosody directly using f0 generation and duration prediction.

B. Grainger (IBM, UK ). What is the average number of phones between the
seams?

P. A. Taylor. The variance is high, with segment lengths ranging from 1 to about
30 phones. For out-of-vocabulary words, the length is typically a couple of phones
or, if lucky, a couple of syllables.

J. Coleman. One of the advantages of concatenative synthesis is that the acoustic
boundaries occur within the units. In your work, there is an implicit assumption
that there is a correlation between the parsing trees and the domains in which co-
articulation occurs.

P. A. Taylor. An implicit assumption is indeed being made: within any constituent,
co-articulation within that constituent is greater than between that constituent and
the next. This assumption is more true than not true, although it cannot be claimed
to hold strictly.

J. Carroll (University of Sussex, Brighton, UK ). Is the same person needed to
record all the training data? If so, does this create a problem for later changes to the
system?

P. A. Taylor. A single person is used to record all the data, but later changes can
be made by recombining existing data to create new data. This cannot be done in
standard systems.
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